Lieb-Thirring Inequalities for Jacobi Matrices
نویسندگان
چکیده
For a Jacobi matrix J on l(Z+) with Ju(n) = an−1u(n− 1) + bnu(n) + anu(n+ 1), we prove that ∑
منابع مشابه
Inequalities for the eigenvalues of non-selfadjoint Jacobi operators
We prove Lieb-Thirring-type bounds on eigenvalues of non-selfadjoint Jacobi operators, which are nearly as strong as those proven previously for the case of selfadjoint operators by Hundertmark and Simon. We use a method based on determinants of operators and on complex function theory, extending and sharpening earlier work of Borichev, Golinskii and Kupin.
متن کاملA Blaschke-type condition for analytic functions on finitely connected domains. Applications to complex perturbations of a finite-band selfadjoint operator
This is a sequel of the article by Borichev–Golinskii– Kupin [2] where the authors obtain Blaschke-type conditions for special classes of analytic functions in the unit disk which satisfy certain growth hypotheses. These results were applied to get Lieb–Thirring inequalities for complex compact perturbations of a selfadjoint operator with a simply connected resolvent set. The first result of th...
متن کاملA Simple Proof of Hardy-lieb-thirring Inequalities
We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schrödinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Sørensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).
متن کاملCritical Lieb–thirring Bounds for One-dimensional Schrödinger Operators and Jacobi Matrices with Regular Ground States
While Lieb–Thirring [14] developed their bounds for their proof of stability of matter, they realized that power law bounds on eigenvalues were valid in any dimension over a natural range of powers. Their method only worked for powers above the critical lower bound on possible powers. In dimension ν ≥ 3, the critical power is 0 and the resulting inequality is the celebrated CLR bound [3, 13, 16...
متن کاملEigenvalue Bounds in the Gaps of Schrödinger Operators and Jacobi Matrices
We consider C = A+B where A is selfadjoint with a gap (a, b) in its spectrum and B is (relatively) compact. We prove a general result allowing B of indefinite sign and apply it to obtain a (δV ) bound for perturbations of suitable periodic Schrödinger operators and a (not quite) Lieb–Thirring bound for perturbations of algebro-geometric almost periodic Jacobi matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 118 شماره
صفحات -
تاریخ انتشار 2002