Lieb-Thirring Inequalities for Jacobi Matrices

نویسندگان

  • Dirk Hundertmark
  • Barry Simon
چکیده

For a Jacobi matrix J on l(Z+) with Ju(n) = an−1u(n− 1) + bnu(n) + anu(n+ 1), we prove that ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for the eigenvalues of non-selfadjoint Jacobi operators

We prove Lieb-Thirring-type bounds on eigenvalues of non-selfadjoint Jacobi operators, which are nearly as strong as those proven previously for the case of selfadjoint operators by Hundertmark and Simon. We use a method based on determinants of operators and on complex function theory, extending and sharpening earlier work of Borichev, Golinskii and Kupin.

متن کامل

A Blaschke-type condition for analytic functions on finitely connected domains. Applications to complex perturbations of a finite-band selfadjoint operator

This is a sequel of the article by Borichev–Golinskii– Kupin [2] where the authors obtain Blaschke-type conditions for special classes of analytic functions in the unit disk which satisfy certain growth hypotheses. These results were applied to get Lieb–Thirring inequalities for complex compact perturbations of a selfadjoint operator with a simply connected resolvent set. The first result of th...

متن کامل

A Simple Proof of Hardy-lieb-thirring Inequalities

We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schrödinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Sørensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).

متن کامل

Critical Lieb–thirring Bounds for One-dimensional Schrödinger Operators and Jacobi Matrices with Regular Ground States

While Lieb–Thirring [14] developed their bounds for their proof of stability of matter, they realized that power law bounds on eigenvalues were valid in any dimension over a natural range of powers. Their method only worked for powers above the critical lower bound on possible powers. In dimension ν ≥ 3, the critical power is 0 and the resulting inequality is the celebrated CLR bound [3, 13, 16...

متن کامل

Eigenvalue Bounds in the Gaps of Schrödinger Operators and Jacobi Matrices

We consider C = A+B where A is selfadjoint with a gap (a, b) in its spectrum and B is (relatively) compact. We prove a general result allowing B of indefinite sign and apply it to obtain a (δV ) bound for perturbations of suitable periodic Schrödinger operators and a (not quite) Lieb–Thirring bound for perturbations of algebro-geometric almost periodic Jacobi matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2002